

Outline

Method	3 minutes	Discretization	Solution Strategy	Turbulence Modeling
Workshop Results	9 minutes	Grid selection	Results update	Interesting observations
Lessons learned	3 minutes			
Feedback	5 minutes			

About ANSYS

Worldwide presence

- 1,600 employees
- 60+ locations & network of
 200+ channel partners in 40+
 countries
- 21 major development centers on 3 continents
- ~500 developers worldwide
- Develop and market a broad range of advanced simulation tools
 - Structural Mechanics
 - Fluid Dynamics
 - Electromagnetics

Many CFD solutions

- General purpose
 - ANSYS FLUENT
 - ANSYS CFX
 - ANSYS CFD (CFX + FLUENT)
- Special purpose
 - Airpak, Icepak, POLYFLOW, BladeModeler, Turbogrid
- Integrated
 - FLUENT for CATIA v5

Solver

- ANSYS CFX used for all analyses
 - Chosen because of existing integration with ANSYS Mechanical for Fluid Structure Analysis (FSI)
 - No FSI used in workshop, but important to design
 - Consider for future work

Discretization and Solution Method

Discretization

- Element Vertex Finite
 Volume Method
- 2nd order High Resolution (bounded) upwind advection
- Rhie-Chow for pressurevelocity coupling.

Solution Method

- Implicitly coupled Mass and momentum
- Linear equations solved using Coupled Algebraic Multigrid.
- Timestep to control convergence

Mass: Co-located, All Speed

$$\dot{m}_{ip} = \rho_{ip} u_{j,ip} \Delta A_{j,ip}$$

Implicit all-speed Newton Raphson linearization:

$$\mathcal{U}^{n} \approx \rho^{n} u^{o} + \rho^{o} u^{n} - \rho^{o} u^{o}$$

Density transport treatment, implicit in préssure via EOS:

$$\rho_{ip} = \rho_P + \beta \Phi_{ip} \cdot \Delta \vec{x}_{ip}$$

P-V coupling via momentum analogy achieves co-location:

$$u_{ip} = \hat{u}_{ip} + d_{ip} \left(\frac{\Delta p}{\Delta x} \right)_{ip}$$

- Importance:
 - All speeds/equations of state supported
 - Natural low-to-high speed numerics
 - Implicit in pressure and velocity

Timestep selection

 Timestep based on Mean **Aerodynamic Chord (MAC)**

MAC Timescale = MAC/airspeed

Could run as large as

Periodically stable after ~150 iterations

MAC Timescale x 10

iterations

300 iterations

Same periodic behavior with MAC Timescale x 1.0 Stable within ~200 to

Best behavior with

MAC Timescale/10 and 2 additional coefficient loops

Smaller timestep required for medium grid due to face angles (0.9 degrees!) Stable within ~800

MAC Timescale/100

Increased overall number of iterations but additional coefficient loops not required

Turbulence Modeling

- SST + Menter's Gamma-Theta predictive transition model
 - Solves 2 Transport Equations
 - Intermittency (γ) Equation
 - Transition Onset Reynolds number Equation
- Used Menter-Langtry Onset Correlation
- Multiple transition mechanisms
 - Natural, Bypass, and Separation induced transition

Additional notes

Non-standard solver settings

- High Resolution (2nd order iteratively bounded) advection scheme for turbulence equations
 - Required for transition modeling but also applied to fully turbulent cases for consistency
- Added extra coefficient loops (2 to 3) to steady the solution
 - Feedback due to sharp transition location
 - Steady state uses pseudo-transient scheme instead of under relaxation
 - Ran transient with 1st order backward Euler scheme to allow additional coefficient loops

Comments on convergence

- Residuals were reduced but never fully converged
 - Possibly due to grid quality but may also relate to flow instability
- Small fluctuations in integrated quantities (CL, CD, CM) still observable
- Iteration (convergence) error was greater than discretization (grid convergence) error but small relative to experimental error

References

Solver

Menter, F.R., Galpin P.F., Esch T., Kuntz, M, Berner, C., (2004), "CFD Simulations of Aerodynamic Flows with a Pressure-Based Method", 24th International Congress of the Aeronautical Sciences, ICAS 2004.

Transition Model

- Menter, F.R., Langtry, R.B., Likki, S.R., Suzen, Y.B., Huang, P.G., and Völker, S., (2004), "A Correlation based Transition Model using Local Variables Part 1- Model Formulation", ASME-GT2004-53452, ASME TURBO EXPO 2004, Vienna, Austria.
- Menter, F.R., Langtry, R.B., Likki, S.R., Suzen, Y.B., Huang, P.G., and Völker, S., (2004), "A Correlation based Transition Model using Local Variables Part 2- Test Cases and Industrial Applications", ASME-GT2004-53452, ASME TURBO EXPO 2004, Vienna, Austria.

Grid Used and Runs Completed

Grid

- Unst-Hex-FromOnetoOne-A-v1
- Solver
 - ANSYS CFX 12.1
- Due to resource restrictions, not all points were run

	Nodes	Elements		
Extra-coarse	6,068,737	5,957,632		
Coarse	20,356,741	20,107,008		
Medium	48,104,801	47,661,056		
Fine	161,853,985	160,856,064		

Config 1	6	13	21	28	32	34	37
Extra-coarse	•	•	•	•	•	•	•
Coarse	•	•		•	•		
Medium		•		•	•	•	•
Fine							
Config 8	6	13	21	28	32	34	37
Medium				•			

Lift Coefficient

Comparison of CL for Fully Turbulent and Transitional Models

Drag Coefficient

Moment Coefficient

Turbulence Intensity near surface (range 0 to 10%) showing transition

Separation and surface streamlines on coarse grid

NSYS

Turbulence Intensity at 65% Span (range 0 to 10%)

Comparison of turbulent and transitional runs at 32 degrees

Velocity over slat at 32 degrees

Turbulence Intensity over slat at 37 degrees

Results from Fluent 13

Similar CFD numerics as CFX

- Pressure based solver with all-speed mass formulation
- Rhie-Chow
- 2nd order numerics
- Coupled AMG solver
- Same physical models
 - SST + Gamma-Theta Transition
 - MAC based timestep to control convergence

Lessons Learned

- Laminar to turbulent transition causes separation at leading edge of slat
- Accurately predicting the transition location is important to
 - improve prediction of CL, CD and CM
 - capture maximum CL and predict separation
- Separation location is sensitive to grid
- Laminar boundary layer on slat influences secondary flows between slat and main airfoil.
- Secondary flows between slat and main airfoil may play an important role in predicting maximum CL

Next steps?

Grid:

- Improve mesh to improve prediction of transition location
 - Streamwise refinement in separation region
- Improve spanwise resolution of secondary flows

Other

Include the effects of structural deformations

McDonnell Douglas 30P-30N 3-Element Flap

Exp. hot film transition location measured as f(x/c)

Error: 0.1 %

Compare CP

Separation and surface streamlines //\\SYS

Separation and surface streamlines on extra-coarse grid

Location of recirculation

Miscellaneous

Useful additional variables

Turbulence Intensity = sqrt(2/3*Turbulence Kinetic Energy)/<airspeed | Velocity>

- Visualizing separation
 - Create isosurface = 0.9*airspeed
 - Clip isosurface to
 - Less than Inlet total pressure (eliminates regions below airfoil) and greater than .25 [cm] wall distance